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Abstract
The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of
the immunoglobulin super-family, encoded in the Class III region of the major histocompatability
complex. RAGE is highly expressed only in the lung at readily measurable levels but increases
quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a
membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells,
thereby regulating their metabolism and enhancing their central barrier functionality. Activation and
upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-
induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced
autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic
inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and
its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the
setting of stress. Understanding the molecular structure and function of it and its ligands in the
setting of inflammation is critically important in understanding the role of this receptor in tumor
biology.

Review
Introduction
The Receptor for Advanced Glycation Endproducts
[RAGE] is a member of the immunoglobulin superfamily,
encoded in the Class III region of the major histocompat-
ability complex [1-4]. This multiligand receptor has one V
type domain, two C type domains, a transmembrane

domain, and a cytoplasmic tail. The V domain has two N-
glycosylation sites and is responsible for most (but not
all) extracellular ligand binding [5]. The cytoplasmic tail
is believed to be essential for intracellular signaling, pos-
sibly binding to diaphanous-1 to mediate cellular migra-
tion [6]. Originally advanced glycation endproducts
(AGEs) were indeed thought to be its main activating lig-
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ands, but since then many other ligands of RAGE includ-
ing damage-associated molecular patterns (DAMP's) have
been identified [1,7,8]. RAGE is thus considered a pattern-
recognition receptor (PRR), having a wide variety of lig-
ands [9-11].

RAGE is expressed as both full-length, membrane-bound
forms (fl-RAGE or mRAGE, not to be confused with
mouse RAGE) and various soluble forms lacking the
transmembrane domain. Soluble RAGE is produced by
both proteolytic cleavage of fl-RAGE and alternative
mRNA splicing. The soluble isoforms include the extracel-
lular domains but lack the transmembrane and cytoplas-
mic domains [12-15]. Soluble RAGE derived specifically
from proteolytic cleavage is sRAGE, although this termi-
nology is not consistent in the literature – sRAGE some-
times refers to soluble RAGE in general. RAGE is expressed
at low levels in a wide range of differentiated adult cells in
a regulated manner but in mature lung type-I pneumo-
cytes it is expressed at substantially higher levels than in
other resting cell types. It is highly expressed in readily
detectable amounts in embryonic cells [16]. RAGE is also
highly expressed and associated with many inflamma-
tion-related pathological states such as vascular disease,
cancer, neurodegeneration and diabetes (Figure 1)
[17,18]. The exceptions are lung tumors and idiopathic
pulmonary fibrosis, in which RAGE expression decreases
from a higher level in healthy tissue [19,20].

RAGE and Soluble RAGE
Human RAGE mRNA undergoes alternative splicing,
much as with other proteins located within the MHC-III
locus on chromosome 6. A soluble form with a novel C-
terminus is detected at the protein level, named "Endog-
enous Secretory RAGE" (esRAGE or RAGE_v1) [21]. This
form is detected by immunohistochemistry in a wide vari-
ety of human tissues that do not stain for noticeable
amounts of fl-RAGE [22]. Over 20 different splice variants
for human RAGE have been identified to date. Human
RAGE splicing is very tissue dependant, with fl-RAGE
mRNA most prevalent in lung and aortic smooth muscle
cells while esRAGE mRNA is prevalent in endothelial
cells. Many of the splice sequences are potential targets of
the nonsense-mediated decay (NMD) pathway and thus
are likely to be degraded before protein expression. Sev-
eral more lack the signal sequence on exon1 and thus the
expressed protein could be subject to premature degrada-
tion. The only human variants that have been detected at
the protein level in vivo is are fl-RAGE, sRAGE, and
esRAGE [17,22].

Human fl-RAGE is also subject to proteolytic cleavage by
the membrane metalloproteinase ADAM10, releasing the
extracellular domain as a soluble isoform [12-14]. Anti-
bodies raised to the novel C-terminus of esRAGE do not
recognize the isoform resulting from proteolytic cleavage.
In serum the predominant species is the proteolytic cleav-
age and not mRNA splicing isoform [12]. Enhancement of

RAGE is Central to Many Fundamental Biological ProcessesFigure 1
RAGE is Central to Many Fundamental Biological Processes. Focusing on RAGE allows us to view many aspects of dis-
ordered cell biology and associated chronic diseases. Chronic stress promotes a broad spectrum of maladies through RAGE 
expression and signaling, focusing the host inflammatory and reparative response.
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proteolytic cleavage will increase soluble RAGE levels,
while inhibition will increase fl-RAGE levels. This cleav-
age process is modulated by Ca++ levels, and following
proteolytic cleavage the remaining membrane-bound C-
terminal fragment is subject to further degradation by γ-
secretase [13,14]. Cleavage of the C-terminal fragment by
γ-secretase will release a RAGE intercellular domain
(RICD) into the cytosolic/nuclear space. Even though
RICD has not yet been detected and is presumably
degraded quickly, overexpression of a recombinant form
of RICD will increase apoptosis as measured by TUNEL
assay, indicating RAGE processing has another intercellu-
lar role [14].

Murine fl-RAGE mRNA also undergoes alternative splic-
ing, and some of the splice products are orthologs of
esRAGE [23]. To date over 17 different mRNA splices have
been detected. As with human splice variants, mouse
splice variants are expressed in a tissue-dependant fashion
and many are targets of NMD. Several common splice pat-
terns exist when comparing human and mouse RAGE,
although variants that would give rise to a soluble isoform
are much rarer in mice [15].

Recombinant RAGE has been cloned into a variety of
expression vectors, and native soluble RAGE has been
purified from murine, bovine, and human lung [24-28]. A
recombinant soluble isoform takes on a dominant-nega-
tive phenotype and blocks signaling. Soluble RAGE can
act as an extracellular "decoy receptor", antagonizing fl-
RAGE and other receptors by binding DAMPs and other
ligands and inhibiting leukocyte recruitment in a variety
of acute and chronic inflammatory conditions [4]. Both
esRAGE and sRAGE act as decoy receptors for the ligand
HMGB1 [12]. However soluble RAGE has functions other
than just blocking fl-RAGE function, and exerts pro-
inflammatory properties through interaction with Mac-1
[10,29]. Thus although soluble RAGE has protective prop-
erties in the setting of chronic inflammation, it might be
better described as a biomarker of chronic inflammation
[30,12]. Information on long-term effects of treatment
with exogenous soluble RAGE is still not available, and it
has yet to be shown that plasma levels of soluble RAGE
are sufficient to effectively act as a decoy receptor in vivo
[18].

The two different properties of soluble RAGE (decoy
receptor and pro-inflammatory) and the different path-
ways associated with its production might explain why
there are both positive and negative correlations between
its levels in human serum and disease. Total soluble RAGE
in serum is significantly lower in non-diabetic men with
coronary artery disease than those without [31]. As
assessed by delayed-type hypersensitivity and inflamma-
tory colitis, soluble RAGE suppressed inflammation In IL-

10 deficient mice, reduced activation of NFκB, and
reduced expression of inflammatory cytokines [32,33].
RAGE knockout mice have limited ability to sustain
inflammation and impaired tumor elaboration and
growth. Thus, RAGE drives and promotes inflammatory
responses during tumor growth at multiple stages and has
a central role in chronic inflammation and cancer [34].

Lower levels of soluble RAGE levels are found in Amyo-
trophic Lateral Sclerosis (ALS), and lower esRAGE levels
predict cardiovascular mortality in patients with end-stage
renal disease [35,36]. In patients with type 2 diabetes
higher soluble RAGE levels positively correlate with other
inflammatory markers such as MCP-1, TNF-α, AGEs, and
sVCAM-1 [37,38]. Total soluble RAGE but not esRAGE
correlates with albuminuria in type 2 diabetes [39]. Inter-
estingly, although changes in human serum levels of sol-
uble RAGE correlate very well with progression of
inflammation-related pathologies, in mouse serum solu-
ble RAGE is undetectable [18]. This contrasts the impor-
tance of splicing and proteolytic cleavage forms soluble
RAGE in mice and humans [15]. One caution is that
although ELISA-based assays of soluble RAGE in serum
show high precision and reproducibility, the levels show
high variation (500–3500 ng/L P < 0.05) among other-
wise healthy donors [40]. Soluble RAGE levels correlate
with AGE levels even in non-diabetic subjects [41]. Thus,
although one measurement of soluble RAGE may not be
sufficient to predict a pathological state, changes in levels
over time could be predictive of the development of a dis-
ease.

RAGE Signaling Perpetuates the Immune and 
Inflammatory Response
A recent review extensively covers the role of RAGE signal-
ing in diabetes and the immune response [18]. Activation
of multiple intracellular signaling molecules, including
the transcription factor NF-κB, MAP kinases, and adhe-
sion molecules are noted following activation of RAGE.
The recruitment of such molecules and activation of sign-
aling pathways vary with individual RAGE ligands. For
example, HMGB1, S100B, Mac-1, and S100A6 activate
RAGE through distinct signal transduction pathways
[42,43]. Ann Marie Schmidt posited a "two-hit" model for
vascular perturbation mediated by RAGE and its ligands
[9]. This "two-hit" model hypothesizes that the first "hit"
is increased expression of RAGE and its ligands expressed
within the vasculature. The second "hit" is the presence of
various forms of stress (e.g. ischemic stress, immune/
inflammatory stimuli, physical stress, or modified lipo-
proteins), leading to exaggerated cellular response pro-
moting development of vascular lesions. Most
importantly, engagement of RAGE perpetuates NF-kB acti-
vation by de novo synthesis of NF-kBp65, thus producing
a constantly growing pool of this pro-inflammatory tran-
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scription factor [44]. RAGE is associated with amplified
host responses in several pathological conditions, includ-
ing diabetes, chronic inflammation, tumors, and neuro-
degenerative disorders [18]. We would similarly posit that
during periods of epithelial barrier disruption that both
signal 1, a growth factor stimulus, and signal 2, various
forms of stress, in conjunction with RAGE and RAGE lig-
ands helps mediate this effect.

RAGE Ligands
RAGE ligands fall into several distinct families. They
include the High Mobility Group family proteins includ-
ing the prototypic HMGB1/amphoterin, members of the
S100/calgranulin protein family, matrix proteins such as
Collagen I and IV, Aβ peptide, and some advanced glyca-
tion endproducts such as carboxymethyllysine (CML-
AGE) [4,6,16,45]. Not all members of these families have
been identified as RAGE ligands, and many RAGE ligands
have a variety of RAGE-independent effects [46]. AGE
molecules are prevalent in pathological conditions
marked by oxidative stress, generation of methoxyl spe-
cies, and increases in blood sugar, as found in type 2 dia-
betes mellitus [6,27]. The S100/calgranulin family
consists of closely related calcium-binding polypeptides
which act as proinflammatory extracellular cytokines.

Ligand accumulation and engagement in turn upregulates
RAGE expression [2]. It is not known why some ligands
(such as HMGB1, some S100's, and CML-AGE) cause
strong pro-inflammatory signaling through RAGE, while
similar molecules (such as pentosidine-AGE and pyrra-
line-AGE) seem to have much less or no signaling. The
most commonly accepted hypothesis to reconcile these
differences involves ligand oligomerization. Of the identi-
fied RAGE ligands, those that oligomerize activate RAGE
more strongly [3]. Oligomers of ligands could potentially
recruit several RAGE receptors as well as Toll-like receptors
[TLRs] at the cell surface or at intracellular vesicles and
induce their clustering on the cell surface. For example,
S100 dimers and higher-order multimers bind several
receptors including TLR4, and clustering of RAGE could
promote a similarly strong response [47]. Recent studies
show that AGEs and certain S100 multimers will cluster
RAGE in this manner [11,48,49]. However this does not
completely explain why some ligands will activate RAGE
strongly while structurally similar ones do not seem to
activate it at all [50].

Overview of HMGB1 and the HMG Protein Family
HMG (High Mobility Group) proteins are very basic,
nuclear, non-histone chromosomal proteins of which
HMGB1 is the only member that has been shown to acti-
vate RAGE. The HMG proteins are not to be confused with
the unrelated compound in the mevalonate pathway
"HMG-CoA" (3-hydroxy-3-methylglutaryl coenzyme A)

and "HMG-CoA reductase inhibitors" (statins) [51]. The
HMG proteins were first identified in calf thymus in 1973
and named for their high mobility in protein separation
gels [52]. Typically they have a high percentage of charged
amino acids and are less than 30 kDa in mass. HMG pro-
teins are expressed in nearly all cell types, relatively abun-
dant in embryonic tissue, and bind to DNA in a content-
dependant but sequence-independent fashion [53]. They
are important in chromatin remodeling and have many
other functions. Mouse knockout data shows that the loss
of any one of the HMG proteins will result in detectable
deleterious phenotypic changes. Of those, the HMGB1 (-/
-) mice die of hypoglycemia within 24 hours of birth
[54,55]. Extended back-crossing of the knockout allele
into various murine strains have revealed an even more
profound phenotype with mice dying by E15 of develop-
ment [Marco Bianchi, personal communication]. The
homology between mouse and human HMGB1 is extraor-
dinary with only two amino acid differences observed.
Similar profound homology exists throughout vertebrate
species with 85% homology with zebrafish.

There are three sub-classifications of HMG proteins:
HMGA, HMGB, and HMGN (Table 1). There is also a sim-
ilar set known as HMG-motif proteins. The HMG-motif
proteins differ in that they are cell-type specific, and bind
DNA in a sequence-specific fashion. HMGA proteins (for-
merly HMGI/Y) are distinguished from other HMG pro-
teins by having three AT-hook sequences (which bind to
AT-rich DNA sequences) [56,57]. They also have a some-
what acidic C-terminal tail, although the recently discov-
ered HMGA1c has no acidic tail and only two AT-hooks.
HMGN proteins (formerly HMG14 and HMG17) have
nucleosomal binding domains. HMGB proteins (formerly
HMG1 through HMG4) are distinguished by having two
DNA-binding boxes that have a high affinity for CpG
DNA, apoptotic nuclei, and highly bent structures such as
four-way Holliday junctions and platinated/platinum-
modified DNA. The HMGB proteins have a long C-termi-
nal acidic tail except for HMGB4, which recently has been
detected at the protein level in the testis where it acts as a
transcriptional repressor [58]. The HMGB acidic tail con-
sists of at least 20 consecutive aspartic and glutamic acid
residues. A C-terminal acidic tail of this length and com-
position is rarely seen in Nature, although a few other
autophagy and apoptosis-related proteins such as parath-
ymosin have a long internal stretch of acidic peptides [59-
61].

Of the HMG proteins, HMGB1 has an additional cytosolic
and extracellular role as a protein promoting autophagy
and as a leaderless cytokine, respectively [62]. Macro-
phages, NK cells and mature DCs actively secrete HMGB1,
and necrotic cells passively secrete it. HMGB1 has also
been detected in the cytosol, depending on the cell type,
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where it has a major positive role in regulating autophagy
[63]. Although HMGA1 has a role in the export of HIPK2
(Homeodomain-interacting protein kinase 2, a proapop-
totic activator of p53) from the nucleus to the cytoplasm
[64], the HMG proteins other than HMGB1 are very sel-
dom detected outside the nucleus. This is likely explains
why HMGB1 is the only member of the family that acti-
vates RAGE [65]. Since HMGB1 translocates between the

nucleus and cytosol, there is a possibility that it could
bind to soluble RAGE in the cytosol and thereby play a
role in regulating its activity.

Biochemistry of HMGB1
HMGB1 is a highly conserved protein consisting of 215
amino acids. It is expressed in almost all mammalian
cells. Human HMGB1 shares an 80% similarity with

Table 1: MG Proteins in Cancer and Normal Tissues

Name
(alt. name)

Chromosome Post-translational 
modifications

Sub-cellular 
localization

Normal tissue 
expression

Expression in cancer

HMGA1a (HMG-I, 
HMG-I/Y),
HMGA1b (HMG-Y),
HMGA1c 
(HMG-I/R)

6p21 Highly modified with 
numerous sites of 
phosphorylation, 
acetylation and/or 
methylation. Possibly 
SUMOylated and ADP-
ribosylated.

Nucleus but has role in 
shuttling HIPK2 
(homeodomain-
interacting protein 
kinase 2) to the cytosol

Abundantly expressed in 
undifferentiated and 
proliferating embryonic 
cells but usually 
undetectable in adult 
tissue

Overexpressed in 
malignant epithelial 
tumors and leukemia

HMGA2 
(HMGI-C, HMGIC)

12q14-15 Phosphorylated Nucleus – the second 
AT-hook is necessary 
and sufficient for 
nuclear localization

See HMGA1's Invasive front of 
carcinomas. A splice 
variant without the 
acidic tail is found in 
some benign tumors.

HMGB1 
(HMG1, Amphoterin)

13q12 Acetylated, methylated, 
phosphorylated, and/or 
ADP-ribosylated when 
actively secreted. An 
acidic tail-deleted 
isoform has been 
purified from calf 
thymus

Often nuclear but 
translocates to the 
cytosol and is actively 
secreted and passively 
released

Abundantly expressed in 
all tissues except 
neurons. Highest levels 
in thymus, liver and 
pancreas.

See Table 2

HMGB2 (HMG2) 4q31 Phosphorylated on up 
to three residues

see HMGB1 Thymus and testes Squamous cell 
carcinoma of the skin, 
ovarian cancer

HMGB3 
(HMG-4, HMG-2a)

Xq28 Lymphoid organs. mRNA 
detected in embryos and 
mouse bone marrow

mRNA detected in 
small cell and non-small 
cell lung carcinomas 
(SCLC, NSCLC)

HMGN1 (HMG14) 21q22.3 Acetylated, highly 
phosphorylated,

nucleus Weakly expressed in 
most tissues

HMGN2 (HMG17) 1p36.1-1p35 Acetylated nucleus Weakly expressed in 
most tissues, but strong 
in thymus, bone marrow, 
thyroid and pituitary 
gland

HMGN3 
(TRIP-7)

6q14.1 nucleus Abundantly expressed in 
kidney, skeletal muscle 
and heart. Low levels 
found in lung, liver and 
pancreas

HMGN4 
(HMG17, L3 NHC)

6p21.3 Highly phosphorylated nucleus Weakly expressed in all 
tissues
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HMGB2 and HMGB3 [55]. It has two lysine-rich DNA
binding boxes (A- and B-) separated by a short linker. The
boxes are separated from the C-terminal acidic tail by
another linker sequence ending in four consecutive
lysines. An isoform believed to result from cleavage of the
acidic tail has been detected in vivo [66]. HMGB1 has three
cysteines, of which the first two vicinal cysteines (Cys 23
and 45, based on Met1 as the initial Met in the immature
protein) can form an internal disulfide bond within the A-
box. The A-box and the oxidation state of these two
cysteines play an important role in the ability of HMGB1
to bind substrates. Oxidation of these two cysteines will
also reduce the affinity of HMGB1 for CpG-DNA [67,68].
Addition of recombinant A-box antagonizes HMGB1's
ability to bind other substrates [67,69]. It remains to be
determined if the action of the A-box is the result of com-
petitive inhibition by binding to other substrates or inter-
fering with the ability of the B-box to bind substrates. The
two boxes acting in concert will recognize bent DNA [70].
The third cysteine (Cys106, in the B-box) often remains
reduced and is important for nuclear translocation [68].
The region around this cysteine is the minimal area with
cytokine activity [65]. HMGB1 undergoes significant post-
translational modification, including acetylation of some
lysines, affecting its ability to shuttle between the nucleus
and cytosol [71,72]. DNA-binding and post-translational
modification accessibility can be modulated by interac-
tions of the acidic tail with the basic B-box [73-75].
HMGB1 signals through TLR2, TLR4, and TLR9 in addi-
tion to RAGE [76,77]. It also binds to thrombomodulin
and syndecan through interactions with the B-box [78].

Evolution of HMGB1
HMG proteins can be found in the simplest multi-cellular
organisms [79]. The two DNA boxes resulted from the
fusion of two individual one-box genes [80]. The two-box
structure makes it particularly avid specific for bent DNA,
and is highly conserved among many organisms [81,82].
This similarity makes generation of HMGB1-specific anti-
bodies a challenge. Antibody cross-reactivity could result
from the strong similarity of HMGB1 across individual spe-
cies, HMGB1 to other HMGB proteins, and even HMGB1
to H1 histones (Sparvero, Lotze, and Amoscato, unpub-
lished data). The possibility of misidentification of HMGB1
must be ruled out carefully in any study. One way to distin-
guish the HMGB proteins from each other is by the length
of the acidic tail (30, 22, and 20 consecutive acidic residues
for HMGB1, 2, and 3 respectively, while HMGB4 has
none). The acid tails are preceded by a proximal tryptic
cleavage site, and they all have slightly different composi-
tions. This makes mass spectrometry in conjunction with
tryptic digestion an attractive means of identification.

Normal/healthy levels of HMGB1
Relative expression of HMGB1 varies widely depending on
tissue condition and type. Undifferentiated and inflamed tis-

sues tend to have greater HMGB1 expression than their
counterparts. Spleen, thymus and testes have relatively large
amounts of HMGB1 when compared to the liver. Subcellular
location varies, with liver HMGB1 tending to be found in the
cytosol rather than the nucleus [55,83]. HMGB1 is present in
some cells at levels exceeded only by actin and estimated to
be as much as 1 × 106 molecules per cell, or one-tenth as
abundant as the total core histones. But this number should
be regarded with some caution since it includes transformed
cell lines and does not define the levels of HMGB1 abun-
dance in vivo in most cellular lineages [55]. The levels of
serum HMGB1 (as determined by Western Blot) have been
reported with wide ranges: 7.0 ± 5.9 ng/mL in healthy
patients, 39.8 ± 10.5 ng/mL in cirrhotic liver and 84.2 ± 50.4
ng/mL in hepatocellular carcinoma [84]. For comparison,
human total serum protein levels vary from about 45–75
mg/mL, and total cytosolic protein levels are about 300 mg/
mL [85,86]. This puts serum HMGB1 in the low part-per-
million range by mass, making detection and separation
from highly abundant serum proteins challenging.

HMGB1 and RAGE in cancer and inflammation
HMGB1, along with RAGE, is upregulated in many tumor
types (Table 2). HMGB1 is passively released from
necrotic cells but not from most apoptotic cells. The rea-
son for this is unknown, but has been hypothesized to be
a result of either redox changes or under-acetylation of
histones in apoptotic cells [87,88]. HMGB1(-/-) necrotic
cells are severely hampered in their ability to induce
inflammation. HMGB1 signaling, in part through RAGE,
is associated with ERK1, ERK2, Jun-NH2-kinase (JNK),
and p38 signaling. This results in expression of NFκB,
adhesion molecules (ICAM, and VCAM, leading to macro-
phage and neutrophil recruitment), and production of
several cytokines (TNFα, IL-1α, IL-6, IL-8, IL-12 MCP-1,
PAI-1, and tPA) [89]. An emergent notion is that the mol-
ecule by itself has little inflammatory activity but acts
together with other molecules such as IL-1, TLR2 ligands,
LPS/TLR4 ligands, and DNA. HMGB1 signaling through
TLR2 and TLR4 also results in expression of NFκB. This
promotes inflammation through a positive feedback loop
since NFκB increases expression of various receptors
including RAGE and TLR2. LPS stimulation of macro-
phages will lead to early release of TNFα (within several
hours) and later release of HMGB1 (after several hours
and within a few days). Targeting HMGB1 with antibodies
to prevent endotoxin lethality therefore becomes an
attractive therapeutic possibility, since anti-HMGB1 is
effective in mice even when given hours following LPS
stimulation [90]. HMGB1 stimulation of endothelial cells
and macrophages promotes TNFα secretion, which also in
turn enhances HMGB1 secretion [91]. Another means to
induce HMGB1 secretion is with oxidant stress [92]. The
actively secreted form of HMGB1 is believed to be at least
partially acetylated, although both actively and passively
released HMGB1 will promote inflammation [71].
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An early observation dating back to 1973 is that the HMG
proteins aggregate with less basic proteins [52]. HMGB1
binds LPS and a variety of cytokines such as IL-1β. This
results in increased interferon gamma (INFγ) production
by PBMC (peripheral blood mononuclear cells) that is
much greater than with just HMGB1 or cytokines alone.
HMGB1 binding to RAGE is enhanced with CpG DNA.
HMGB1's ability to activate RAGE may result more from
its ability to form a complex with other pro-inflammatory
molecules, with this complex subsequently activating
RAGE [93]. Therefore any test of RAGE binding solely by
HMGB1 will have to account for this, since contamination
with even small amounts of LPS or CpG DNA will increase
binding. Thrombomodulin competes with RAGE for
HMGB1 in vitro and the resulting complex does not
appear to bind RAGE, suggesting a possible approach to
attenuate RAGE-HMGB1 signaling [78,94]. In fact bind-
ing to thrombomodulin can also lead to proteolytic cleav-
age of HMGB1 by thrombin, resulting in a less-active
inflammatory product [94].

A peptide consisting of only residues 150–183 of HMGB1
(the end of the B-box and its linker to the acidic tail)
exhibits RAGE binding and successfully competes with
HMGB1 binding in vitro [95]. This sequence ias similar to
the first 40 amino acids (the first EF-hand helix-loop-helix
sequence) of several S100 proteins. An HMGB1 mutant in
which amino acids 102–105 (FFLF, B-box middle) are
replaced with two glycines induces significantly less TNFα
release relative to full length HMGB1 in human monocyte
cultures [96]. This mutant is also able to competitively
inhibit HMGB1 simulation in a dose-dependent manner
when both are added.

Is HMGB1 the lone RAGE activator of the HMG family?
For all the reasons noted above, HMGB1 is the sole
known HMG-box ligand of RAGE. None of the other
nuclear HMG proteins have been shown to activate RAGE.
The HMGB proteins can complex CpG DNA, and highly
bent structures such as four-way Holliday junctions and
platinated/platinum-modified DNA while other members
cannot. Unlike other HMGB proteins, HMGB1 is abun-
dantly expressed in nearly all tissues, and thus is readily
available for translocation out of the nucleus to the
cytosol for active and passive secretion. Although as a cau-
tionary note, HMGB2 and HMGB3 are also upregulated in
some cancers, and might play a role as RAGE activators in
addition to HMGB1. The similarity of these proteins to
HMGB1 suggests in various assays that they may be misi-
dentified and included in the reported HMGB1 levels. The
HMG and S100 family members each consist of similar
proteins that have distinct and often unapparent RAGE-
activating properties.

S100 Proteins as RAGE ligands and their role in 
Inflammation
A recent review on S100 proteins has been published, and
provides more extensive detail than given here [97]. We
will focus on the critical elements necessary to consider
their role in cancer and inflammation. S100 proteins are a
family of over 20 proteins expressed in vertebrates exclu-
sively and characterized by two calcium binding EF-hand
motifs connected by a central hinge region [98]. Over
forty years ago the first members were purified from
bovine brain and given the name "S-100" for their solubil-
ity in 100% ammonium sulfate [99]. Many of the first
identified S100 proteins were found to bind RAGE, and

Table 2: HMGB1 and RAGE in Cancer and Inflammation

Inflammatory state, disease or cancer Effect of RAGE/HMGB1

Colon cancer Co-expression of RAGE and HMGB1 leads to enhanced migration and invasion by colon cancer cell 
lines. Increased RAGE expression in colon cancer has been associated with atypia, adenoma size, and 
metastasis to other organs. Stage I tumors have relatively low % of tumors expressing, Stage IV 
virtually universal expression

Prostate cancer Co-expression of RAGE and HMGB1 has been found in a majority of metastatic cases, in tumor cells 
and associated stromal cells.

Pancreatic cancer Enhanced expression of RAGE and HMGB1 in the setting of metastases.

Lung and esophageal cancers Higher tumor stage is characterized by downregulation of RAGE.

Inflammatory Arthritis HMGB1 is overexpressed. RAGE binding, as other receptors, results in: macrophage stimulation, 
induction of TNFα and IL-6, maturation of DCs, Th1 cell responses, stimulation of CD4+ and CD8+ 
cells, and amplification of response to local cytokines.

Sepsis HMGB1 propagates inflammatory responses and is a significant RAGE ligand in the setting of sepsis 
and acute inflammation. HMGB1 is an apparent autocrine/paracrine regulator of monocyte invasion, 
involving RAGE mediated transmigration through the endothelium.
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thus RAGE-binding was theorized to be a common prop-
erty of all S100 proteins. However several of the more
recently identified members of the family do not bind
RAGE. The genes located on a cluster on human chromo-
some 1q21 are designated as the s100a sub-family and are
numbered consecutively starting at s100a1. The S100
genes elsewhere are given a single letter, such as s100b
[100]. In general, mouse and human S100 cDNA is 79.6–
95% homologous although the mouse genome lacks the
gene for S100A12/EN-RAGE [101]. Most S100 proteins
exist as non-covalent homodimers within the cell [98].
Some form heterodimers with other S100 proteins – for
example the S100A8/S100A9 heterodimer is actually the
preferred form found within the cell. The two EF-hand
Ca++ binding loops are each flanked by α-helices. The N-
terminal loop is non-canonical, and has a much lower
affinity for calcium than the C-terminal loop. Members of
this family differ from each other mainly in the length and
sequence of their hinge regions and the C-terminal exten-
sion region after the binding loops. Ca++ binding induces
a large conformational change which exposes a hydro-
phobic binding domain (except for S100A10 which is
locked in this conformation) [47]. This change in confor-
mation allows an S100 dimer to bind two target proteins,
and essentially form a bridge between as a heterotetramer
[102]. The S100 proteins have been called "calcium sen-
sors" or "calcium-regulated switches" as a result. Some
S100 proteins also bind Zn++ or Cu++ with high affinity,
and this might affect their ability to bind Ca++ [101].

S100 proteins have wildly varying expression patterns
(Table 3). They are upregulated in many cancers, although
S100A2, S100A9, and S100A11 have been reported to be
tumor repressors [50]. S100 proteins and calgranulins are
expressed in various cell types, including neutrophils,
macrophages, lymphocytes, and dendritic cells [2].
Phagocyte specific, leaderless S100 proteins are actively
secreted via an alternative pathway, bypassing the Golgi
[103]. Several S100 proteins bind the tetramerization
domain of p53, and some also bind the negative regula-
tory domain of p53. Binding of the tetramerization
domain of p53 (thus controlling its oligomerization state)
could be a property common to all S100 proteins but this
has not been reported [104]. Their roles in regulating the
counterbalance between autophagy and apoptosis have
also not been reported.

Individual S100 proteins are prevalent in a variety of
inflammatory diseases, specifically S100A8/A9 (which
possibly signals through RAGE in addition to other mech-
anisms), and S100A12 (which definitely signals through
RAGE). These diseases include rheumatoid arthritis, juve-
nile idiopathic arthritis, systemic autoimmune disease
and chronic inflammatory bowel disease. Blockade of the
S100-RAGE interaction with soluble RAGE in mice

reduced colonic inflammation in IL-10-deficient mice,
inhibited arthritis development, and suppressed inflam-
matory cell infiltration [43,33,32,105]. Some S100 pro-
teins have concentration-dependant roles in wound
healing, neurite outgrowth, and tissue remodeling.

There are several important questions that need to be
addressed when examining proposed S100-RAGE interac-
tions: Does this interaction occur in vivo in addition to in
vitro? Could the observed effects be explained by a RAGE-
independent mechanism (or even in addition to a non-
RAGE mechanism)? Is this interaction dependant on the
oligomeric state of the S100 protein? (S100 oligomeric
state is itself dependant on the concentration of Ca++ and
other metal ions as well as the redox environment). One
area that has not received much attention is the possibility
of S100 binding to a soluble RAGE in the cytosol or
nucleus (as opposed to extracellular soluble RAGE).

S100 Proteins are not universal RAGE ligands
Several of the S100 family members are not RAGE ligands.
Although there is no direct way to identify RAGE binding
ability based on the amino acid sequences of the S100
proteins, conclusions can be drawn based on common
biochemical properties of the known S100 non-ligands of
RAGE: The first is that the non-ligands often exhibit strong
binding to Zn++. The second is that their Ca++ binding is
hindered or different in some ways from the S100 RAGE
ligands. The third is that their oligomerization state is
altered or non-existent.

Non-ligands of RAGE: S100A2, A3, A5, A10, A14, A16, G, Z
S100A2 is a homodimer that can form tetramers upon
Zn++ binding, and this Zn++ binding inhibits its ability to
bind Ca++. Although two RAGE ligands (S100B and
S100A12) also bind Zn++ very well, the effect on them is
to increase their affinity for Ca++ [106,107]. The related
S100A3 binds Ca++ poorly but Zn++ very strongly [101].
S100A5 is also a Zn++ binder, but it binds Ca++ with 20–
100 fold greater affinity than other S100 proteins. It also
can bind Cu++, which will hinder its ability to bind Ca++
[108]. S100A10 (or p11) is the only member of the S100
family that is Ca++ insensitive. It has amino acid altera-
tions in the two Ca++ binding domains that lock the struc-
ture into an active state independently of calcium
concentration [109]. It will form a heterotetramer with
Annexin A2, and it has been called "Annexin A2 light
chain" [110]. S100A14 has only 2 of the 6 conserved resi-
dues in the C-terminal EF-hand, and thus its ability to
bind Ca++ is likely hindered [111]. S100A16 binds Ca++
poorly, with only one atom per monomer of protein.
However upon addition of Zn++, higher aggregates form
[112]. S100G was also known as Vitamin D-dependent
calcium-binding protein, intestinal CABP, Calbindin-3,
and Calbindin-D9k [113]. It is primarily a monomer in
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Table 3: S100 Proteins in Cancer and Normal Tissues

Name Chrom. RAGE binding p53 binding Normal tissue 
expression

Expression in 
cancer

Cancer notes

S100A1 1q21 Possibly, 
(antagonizes 
S100A4-RAGE 
interactions)

Yes – TET and NRD Highest in heart, 
also expressed in 
kidney, liver, skin, 
brain, lung, stomach, 
testis, muscle, small 
intestine, thymus 
and spleen

Renal carcinoma

S100A2 1q21 Not observed Yes – TET and NRD Kerotinocytes, 
breast epithelial 
tissue, smooth 
muscle cells and 
liver

Thyroid, prostate, 
lung, oral, and 
breast carcinomas; 
melanoma

Mostly down-
regulated but 
upregulated in some 
cancer types

S100A3 1q21 Not observed Differentiating 
cuticular cells in the 
hair follicile

S100A4 1q21 Yes, coexpressed 
with RAGE in 
lung and breast 
cancer

Chondrocytes, 
astrocytes, Schwann 
cells, and other 
neuronal cells

Thyroid, breast and 
colorectal 
carcinomas; 
melanoma; bladder 
and lung cancers

Overexpression is 
associated with 
metastases and poor 
prognosis

S100A5 1q21 Not observed Limited areas of the 
brain

Astrocytic tumors Overexpressed

S100A6 1q21 Yes, coexpressed 
with RAGE in 
lung and breast 
cancer

Yes – TET Neurons of 
restricted regions of 
the brain

Breast cancer, 
colorectal 
carcinoma

Not found in healthy 
breast or colorectal

S100A7/A7A 1q21 Yes, Zinc 
dependant 
activation

Kerotinocytes, 
dermal smooth 
muscle cells

Breast carcinoma, 
bladder and skin 
cancers

Not expressed in 
non-cancer tissues 
except for skin

S100A8/A9 1q21 Possibly 
(activates NF-kB 
in endothelial 
cells)

Expressed and 
secreted by 
neutrophils

Breast and 
colorectal 
carcinomas, gastric 
cancer

Upregulated in 
premetastatic stage, 
then downregulated

S100A9 1q21 See S100A8 See S100A8 See S100A8

S100A10 1q21 Not observed Several tissues, 
highest in lung, 
kidney, and intestine

S100A11 1q21 Yes – 
inflammation 
induced 
chondrcyte 
hypertrophy

Yes – TET Keratinocytes Colorectal, breast, 
and renal 
carcinomas; bladder, 
prostate, and gastric 
cancers

Decreased 
expression is an 
early event in 
bladder carcinoma, 
high expression is 
associated with 
better prognosis in 
bladder and renal 
cancer patients but 
worse prognosis in 
prostate and breast
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solution and upon Ca++ binding it does not exhibit the
conformational changes that characterize many other
S100 proteins [114]. S100Z is a 99-amino acid protein
that binds S100P in vitro. It exists as a homodimer that
binds Ca++ but its aggregation state is unaffected by Ca++
[115].

Possible ligands of RAGE: S100A1, S100A8/9
S100A1 normally exists as a homodimer, and its mRNA is
observed most prominently in the heart, with decreasing
levels in kidney, liver, skin, brain, lung, stomach, testis,
muscle, small intestine, thymus and spleen. S100A1 is

present in the cytoplasm and nucleus – rat heart muscle
cell line H9c2 is mostly nuclear, adult skeletal muscle
mostly cytoplasmic. S100A1 is released into the blood
during ischemic periods, and extracellular S100A1 inhib-
its apoptosis via ERK1/2 activation [101]. S100A1 binds
to both the tetramerization and negative regulatory
domains of p53 [104]. S100A1 interacts with S100A4 and
they antagonize each other in vitro and in vivo [116]. There
is still some debate if S100A1 binds to RAGE, although
recent work with PET Imaging of Fluorine-18 labeled
S100A1 administered to mice indicates that it co-localizes
with RAGE [117].

S100A12 1q21 Yes – 
Inflammatory 
processes 
(activates 
endothelial cells 
and leukocytes)

Granulocytes, 
keratinocytes

Expressed in acute, 
chronic, and allergic 
inflammation

S100A13 1q21 Yes – stimulates 
its own uptake by 
cells

Broadly expressed 
in endothelial cells, 
but not vascular 
smooth muscle cells

Upregulated in 
endometrial lesions

S100A14 1q21 Not observed Broadly expressed 
in many tissues, but 
not detected in 
brain, skeletal 
muscle, spleen, 
peripheral blood 
leukocytes

Overexpressed in 
ovary, breast and 
uterus tumors, 
Down-regulated in 
kidney, rectum and 
colon tumors

S100A15
(name 
withdrawn, see 
S100A7)

S100A16 1q21 Not observed Broadly expressed 
with highest levels 
esophagus, lowest in 
lung, brain, pancreas 
and skeletal muscle

Upregulated in lung, 
pancreas, bladder, 
thyroid and ovarian 
tumors

S100B 21q22 Yes – RAGE -
dependant, 
cytochrome C 
mediated 
activation of 
caspase-3

Yes – TET and NRG Astrocytes Melanoma Overexpressed in 
melanoma

S100G Xp22 Not observed Pancreas, intestine, 
mineralized tissues

Pancreatic cancer Overexpressed 
>100-fold

S100P 4p16 Yes – stimulates 
cell proliferation 
and survival

Placenta Prostate and gastric 
cancers

Overexpressed

S100Z 5q14 Not observed Pancreas, lung, 
placenta, and spleen

Decreased 
expression in cancer

p53 binding domains: TET: Tetramerization, NRD: Negative regulatory domain

Table 3: S100 Proteins in Cancer and Normal Tissues (Continued)
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In addition to forming homodimers, S100A8 and S100A9
can form heterodimers and heterotetramers with each
other in a calcium and oxidation-dependant fashion
[101]. S100A8 and S100A9 have not been directly shown
to activate RAGE, but there is substantial functional evi-
dence that many of their effects are blocked by RAGE sup-
pression or silencing. S100A8/9 exerts a pro-apoptotic
effect in high concentrations, but promotes cell growth at
low concentrations [118]. The effects of N-carboxyme-
thyl-lysine-modified S100A8/9 are ameliorated in RAGE
knockout mice or by administration of soluble RAGE to
wild-type mice [119]. S100A8/9 binds to heparan sulfate,
proteoglycans, and carboxylated N-glycans [103]. A small
(<2%) sub-population of RAGE expressed on colon
tumor cells are modified to carboxylated N-glycans, and it
is quite possible that this sub-population is activated by
S100A8/9 [120]. S100A8 and S100A9 proteins are
secreted in an energy-dependent fashion by phagocytes
during inflammatory processes. They stimulate specific
inflammatory patterns in endothelial cells, interacting
with components of the cytoskeleton, including keratin
filaments, microtubules, type III intermediate filaments,
and F-actin [121]. In the presence of calcium, S100A8 and
S100A9 form tetramers and bind directly to microtubules.
S100A8/S100A9 also modulates tubulin-dependent
cytoskeleton rearrangement during migration of phago-
cytes. S100A8 and S100A9 interact with both type III
intermediate filaments and keratin filaments for the pur-
pose of wound repair. Extracellularly, the S100A8/S100A9
complex displays cystostatic and antimicrobial activities
and inhibits macrophage activation and immunoglobulin
synthesis by lymphocytes [122]. The reduced but not the
oxidized S100A8 homodimer is strongly chemotactic for
leukocytes [121]. Upregulation of S100A8 and S100A9 in
premetastatic lung tissue provide a niche for migration of
tumor cells [123]. This upregulation can be induced by
VEGF-A, TGFβ and TNFα secretion from distant tumors.
Upregulation in lung VE-cadherin+ endothelial cells pro-
motes recruitment and infiltration of Mac1+ myeloid
cells, and thus provides a niche for migration of tumor
cells. Blocking S100A8 and S100A9 expression in the
premetastatic stage could prevent this permissive niche
from being formed and thus inhibit the migration of
tumor cells.

Ligands of RAGE: S100A4, A6, A7/A7A/A15, A11, A12, A13, 
B, P
S100A4
S100A4 binds to RAGE, and has been implicated in upreg-
ulation of MMP-13 (Matrix Metalloproteinase 13) in oste-
oarthritis, which leads to tissue remodeling [124]. S100A4
is expressed in astrocytes, Schwann cells, and other neuro-
nal cells in addition to chondrocytes [43]. S100A4 is
upregulated after nerve tissue injury. Neurite outgrowth
stimulated by S100A4 is observed for the protein in the

oligomeric, not dimeric, state [121]. This protein also
stimulates angiogenesis via the ERK1/2 signaling path-
way. S100A4 binds to the tetramerization domain but not
the negative regulatory domain of p53 [104].

S100A6
S100A6 is found primarily in the neurons of restricted
regions of the brain [42]. S100A6 is also found in the
extracellular medium of breast cancer cells. S100A6 binds
to the tetramerization domain of p53 [104]. S100A6
bound significantly to the C2 domain of RAGE, as
opposed to the V and/or C1 domains to which most other
ligands bind and thus suggests that it might have a dis-
cordant function from other RAGE ligands. S100A6 trig-
gers the JNK pathway and subsequently the Caspase 3/7
pathway, resulting in apoptosis [125].

S100A7/S100A7A/S100A15
S100A7, also called Psoriasin 1, is part of a sub-family of
several proteins [101]. The highly homologous S100A7A,
a member of this sub-family, was formerly known as
S100A15 but this name has been withdrawn [113].
S100A7 and S100A7A are functionally distinct despite the
high sequence similarity [126]. S100A7 is highly
expressed in epidermal hyperproliferative disease and
recruits CD4+ lymphocytes and neutrophils [102].
Although several S100 proteins are upregulated in various
forms of breast cancer, S100A7 is strongly up-regulated
only in ductal carcinoma in situ [127]. There are high lev-
els of monomeric and covalently crosslinked high molec-
ular weight S100A7 in human wound exudate and
granulation tissue. Immunohistological studies suggest
that S100A7 is produced by keratinocytes surrounding the
wound and is released into the wound exudate. S100A7
exerts antibacterial activity, and the central region includ-
ing only amino acids 35–80 is sufficient to mediate this
activity [128]. Although both S100A7 and S100A7A are
expressed in keratinocytes, S100A7A is also expressed in
melanocytes and Langerhans cells of the epidermis, and
dermal smooth muscle endothelial cells [126]. Binding,
signaling, and chemotaxis of S100A7 are dependent on
Zn++ and RAGE in vitro, while S100A7A seems to signal
through a RAGE-independent pathway. S100A7 and
S100A7A exert a synergistic effect, promoting inflamma-
tion in vivo [126].

S100A11
S100A11 is overexpressed in many cancers [129]. It is
homodimeric and interacts in a Ca++ dependant fashion
with annexin I [130]. It is a key mediator of growth of
human epidermal keratinocytes triggered by high Ca++ or
TGFβ [129]. Under these conditions S100A11 is phospho-
rylated and transported to the nucleus by nucleolin.
S100A11 binds to the tetramerization domain (but not
the negative regulatory domain) of p53 [104]. Extracellu-
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lar S100A11 is dimerized by transglutaminase 2, and this
covalent homodimer acquires the capacity to signal
through the p38 MAPK pathway, accelerate chondrocyte
hypertrophy and matrix catabolism, and thereby couples
inflammation with chondrocyte activation to promote
osteoarthritis progression [131].

S100A12/EN-RAGE
S100A12 (EN-RAGE) is primarily expressed in granulo-
cytes, but also in found in keratinocytes and psoriatic
lesions. S100A12 represents about 5% of the total
cytosolic protein in resting neutrophils. It is expressed in
acute, chronic, and allergic inflammation. It interacts with
RAGE in a Ca++ dependent manner, but also binds Cu++.
There is no s100a12 gene in mice, although S100A8 seems
to be a functional homologue [132,133]. S100A12 is up
regulated in psoriasis and melanoma [101]. It binds to the
RAGE C1 and C2 domains instead of the V domain [49].
It can also bind to RAGE expressed on endothelial cells,
signaling through the NF-κB and MAPK pathways.
S100A12 shares sequence homology with the putative
RAGE-binding domain of HMGB1 (residues 153–180).
Secreted S100A12 binds to RAGE and enhances expres-
sion of intercellular adhesion molecule-I (ICAM-1), vas-
cular cell adhesion molecule-I (VCAM-1), NF-κB, and
tumor necrosis factor (TNF)-α [43]. S100A12 is a chem-
oattractant for monocytes and mast cells, although only
the hinge region seems important for the latter [134].
Since mast cells do not express RAGE protein or mRNA,
their activation by S100A12 occurs in a RAGE-independ-
ent fashion. S100A12 exists as a homodimer under low
Ca++ conditions, but will form hexamer aggregates (three
dimers) at millimolar concentrations of Ca++ [135].
S100A12, in addition to S100A13, binds to the anti-aller-
gic drugs cromolyn, tranilast, and amlexanox in a Ca++
dependant manner. This suggests that S100A12 and
S100A13 might be involved in degranulation of mast cells
in a RAGE-independent manner [136].

S100A13
S100A13 has a very broad expression pattern, in contrast
to the other S100 proteins. S100A13 is expressed in
endothelial cells, but not vascular smooth muscle cells. It
is upregulated in extra-uterine endometriosis lesions
when compared to normal tissues, and may have a role in
vascularization [137]. Its affinity for Ca++ is low, but
Ca++ binding leads to a conformational change exposing
a novel Cu++ binding site [138]. Upon Cu++ binding, it
regulates the stress-dependant release of FGF-1 and plays
a role in angiogenesis in high-grade astrocytic gliomas
[139]. S100A13 in addition to S100A12 may be involved
in the degranulation of mast cells [136].

S100B
S100B is expressed primarily in the astrocytes of the
human cortex and melanocytes as well as myeloid den-

dritic cells [42]. S100B, along with S100A1 and S100A6,
are the most abundant S100 proteins in the brain of sev-
eral species including mice and rats. Elevated levels of
S100B have been found in patients following brain
trauma, ischemia/infarction, Alzheimer's disease, and
Down's syndrome [42]. S100B is used as a marker of glial
cell activation and death [140]. It is believed to exist as a
mixture of covalent and non-covalent dimers in the brain
since ELISA assays done under non-oxidizing conditions
will underestimate the amount of S100B [141,142]. In
this regard, covalent S100B dimers can be used as a
marker of oxidative stress [142]. S100B binds to both the
tetramerization domain and the negative regulatory
domain of p53 [104]. S100B also inhibits microtubulin
and type III intermediate filament assemblies. S100B
binds both the variable (V) and constant (C1) regions of
RAGE, and oligomers of S100B bind RAGE more strongly
[42,48]. At equivalent concentrations, S100B increases
cell survival while S100A6 induces apoptosis via RAGE
interactions, dependant on generation of reactive oxygen
species (ROS). Upon binding to RAGE and activating
intracellular ROS formation, S100B activates the PI 3-
kinase/AKT pathway and subsequently the NFκB path-
way, resulting in cellular proliferation. S100B exerts
trophic effects on neurons and astrocytes at lower concen-
trations and causes neuronal apoptosis, activating astro-
cytes and microglia at higher concentrations [143-146].
S100B activation of RAGE upregulates IL-1β and TNF-α
expression in microglia and stimulates AP-1 transcrip-
tional activity through JNK signaling. Upregulation of
COX-2, IL-1β and TNF-α expression in microglia by
S100B requires the concurrent activation of NF-κB and
AP-1.

S100P
S100P binds to RAGE and is important in prostate, pan-
creas, and gastric cancers [146,147]. It is also detected in
normal lung as well as lung cancer tissue, and is increased
primarily in adenocarcinomas [148]. Treatment of pan-
creatic cell lines with S100P stimulates cell proliferation,
migration, invasion, and activates the MAP kinase and
NFκB pathways [149]. The anti-allergy drug cromolyn
binds S100P and will block S100P-RAGE interaction. It
inhibits tumor growth and increases the effectiveness of
gemcitabine in experimental animal models [150]. Non-
Steroidal Anti-Inflammatory Drugs (NSAIDs) are simulta-
neously pro-tumorigenic by up-regulating S100P expres-
sion and anti-tumorigenic by decreasing Cox2 activity
[151].

S100 Proteins – subtle differences translate to large 
changes in RAGE binding
Although the S100 proteins share much structural similar-
ity with their two EF-hand Ca++ binding domains flanked
by α-helices, only some of the members activate RAGE
[97]. Subtle structural differences that lead to different
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biochemical properties (Ca++ and Zn++ binding and pre-
ferred oligomerization state) thus seem to lead to different
abilities to activate RAGE. Higher oligomerization states
tend to lead to RAGE activation. RAGE also binds to sev-
eral protein families that readily form aggregates and oli-
ogmers – Amyloid beta peptide, Collagen, and AGEs.

RAGE and Abeta
The Amyloid-beta peptide (Abeta) is a peptide most com-
monly of 40 or 42 amino acids whose accumulation in
amyloid plaques is one of the characteristics of Alzheimer
brains. Abeta exists extracellularly either as a monomer,
soluble oligomer, or insoluble fibrils and aggregates.
Abeta binds to RAGE on neurons and microglial cells
[152]. On neurons, Abeta activation of RAGE will gener-
ate oxidative stress and activate NF-KB. Abeta activation of
microglia will enhance cell proliferation and migration
[153,154]. However other receptors might also mediate
Abeta toxicity, since RAGE-independent effects also exist
[155]. The V and C1 domains of RAGE bind to Abeta oli-
gomers and aggregates (respectively), and blocking these
will prevent Abeta-induced neurotoxicity [156]. Exposure
of a RAGE-expressing human neuroblastoma cell line
(SHSY-5Y) to Abeta oligomers caused massive cell death,
while exposure to Abeta fibrils and aggregates caused only
minor cell death. Treatment with blocking antibodies spe-
cific to RAGE domains was able to protect against Abeta
aggregate- or oligomer-inducuded death (but not fibril-
induced death).

RAGE and Collagen
Unlike other non-embryonic tissues, RAGE is highly
expressed in healthy lung and its expression decreases in
pathological states. RAGE expression in the lung is a dif-
ferentiation marker of alveolar epithelial type I (AT I)
cells, and is localized to the basolateral plasma membrane
[20]. RAGE enhances adherence of these cells to collagen-
coated surfaces and induces cell spreading [16]. RAGE
binds laminin and Collagen I and IV in vitro, but not
fibronectin. Thus RAGE plays a role in anchoring AT I cells
to the lung basement membrane, which is rich in Colla-
gen IV [20,157,158]. Absence of RAGE expression in (-/-)
mice leads to an increase in spontaneous idiopathic pul-
monary fibrosis (IPF). Human lung from late-stage IPF
patients showed significant down-regulation of RAGE
when compared to healthy lung tissue [20].

AGEs
Advanced glycation endproducts (AGEs) a broad class of
non-enzymatic products of reactions between proteins or
lipids and aldose sugars [159]. The reaction between the
protein and sugar causes its characteristic browning in
food products. The western diet in particular is full of
AGEs. Although glycation is a general term for addition of
a sugar, in this case it specifically refers to non-enzymatic

addition to a protein. "Glycosylation" is often used for
enzymatic addition of sugars. The Maillard reaction, start-
ing from the glycation of protein and progressing to the
formation of AGEs, is implicated in the development of
complications of diabetes mellitus, as well as in the patho-
genesis of cardiovascular, renal, and neurodegenerative
diseases [3,119,160,161]. The Maillard reaction begins
with the sugars forming Schiff bases and Amadori prod-
ucts. The carbonyl groups of these precursors can react
with amino, sulfhydryl, and guanidinyl functional groups
in proteins. AGEs cannot be chemically reverted to their
original forms but their precursor, Amadori products, can
be. AGEs are a diverse category of non-enzymatic modifi-
cations that result for these reactions, and not all AGE-
modified proteins activate RAGE. Over twenty different
AGE modifications have been characterized, of which car-
boxymethyl lysine (CML) modified proteins are strong
inducers of RAGE signaling [3,160]. Other AGE modifica-
tions to proteins (such as pentosidine and pyrraline) do
not increase RAGE signaling. As such, characterizing AGE-
modifications of proteins is important. One promising
technique is Mass Spectrometry, especially "bottom-up"
proteomics involving cleavage of proteins followed by
analysis of the subsequent peptides [160].

RAGE and AGEs in the Redox Environment
AGE accumulation itself is considered a source of oxida-
tive stress. In hyperglycemic environments, glucose can
undergo auto-oxidation and generate OH radicals
[161,162]. Schiff-base products and Amadori products
themselves cause ROS production [162]. Nitric Oxide
donors can scavenge free radicals and inhibit AGE forma-
tion [163]. Over time AGE deposits contribute to diabetic
atherosclerosis in blood vessels. As a human naturally
ages, one generates high levels of endogenous AGEs
[164,165].

RAGE was originally named for its ability to bind AGEs,
but since 1995 there have been many more ligands found
[8,166]. Formation of AGEs is a way to sustain the signal
of a short oxidative burst into a much longer-lived post-
translationally modified protein [119]. RAGE will bind to
AGE-modified albumin but not nonglycated albumin
[167]. AGE activation of RAGE is found in diabetes, neuo-
degeneration, and aging [168]. Tumors provide an envi-
ronment that favors generation of AGEs since according to
Warburg's original hypothesis they rely primarily on
anaerobic glycolosis for energy, and have a higher uptake
of glucose [169,170]. Prostate carcinoma cells bind AGEs
through the V-domain of RAGE [171]. AGEs have in fact
been identified in cancerous tissue, which leads to the
possibility of AGE activation of RAGE contributing to can-
cer growth [172]. However there are also other RAGE lig-
ands in greater abundance. Single molecules of RAGE do
not bind AGEs well, but oligomers of RAGE bind them
Page 13 of 21
(page number not for citation purposes)



Journal of Translational Medicine 2009, 7:17 http://www.translational-medicine.com/content/7/1/17
strongly [11]. This supports the notion that RAGE oli-
gomerization is important for sustained signaling. Colla-
gen will normally accumulate some degree of glycation in
vivo, but collagen with synthetic AGE-modification will
enhance neutrophil adhesion and spreading [173].

Sorbinil and zenarestat are orally active aldose reductase
inhibitors (ARI's) derived from quinazoline. They, in
addition to vitamin C and E, have ameliorative benefits in
decreasing intracellular oxidative stress [174]. Vitamin E is
effective in part because of its chemical structure. It is able
to donate a hydrogen atom from its hydroxyl group, com-
bining with ROS and neutralizing them [175]. Sadly,
many of the clinical trials of antioxidants have failed to
modify cancer and have in some instances enhanced its
development, suggesting that "aerobic" or oxidative extra-
cellular events may be a preferred means to limit chronic
inflammation. Injection of soluble RAGE prevents liver
reperfusion injury and decreases levels of TNF-α (Tumor
Necrosis Factor-α), a cytokine that signals apoptosis and
contributes to systemic inflammation, and thereby
decreases insulitis [176]. Aminoguanidine delivery also
decreases levels of albumin in the blood stream and
decreases aortic and serum levels of AGEs thus slowing the
progression of atherosclerosis [177].

RAGE Ligands in Neurobiology
The RAGE-NF-κB axis operates in diabetic neuropathy.
This activation was blunted in RAGE (-/-) mice, even 6
months following diabetic induction. Loss of pain percep-
tion is reversed in wild type mice treated with exogenous
soluble RAGE [178]. The interaction between HMGB1
and RAGE in vitro promotes neurite outgrowth of cortical
cells, suggesting a potential role of RAGE as a mediator in
neuronal development [166]. Nanomolar concentrations
of S100B promote cell survival responses such as cell
migration and neurite growth. While the interaction of
RAGE with S100B can produce anti-apoptotic signals,
micro-molar concentrations of S100B will produce
oxyradicals, inducing apoptosis. S100B also activates
RAGE together with HMGB1, promoting the production
of the transcription factor NF-kB [144]. Another proposed
mechanism for how RAGE may mediate neurite out-
growth involves sulfoglucuronyl carbohydrate (SGC).
Examination of both HMGB1 and SGC in the developing
mouse brain reveals that the amount of RAGE expressed
in the cerebellum increases with age. Antibodies to
HMGB1, RAGE, and SGC inhibit neurite outgrowth, sug-
gesting that RAGE may be involved with the binding of
these molecules and their downstream processes [179].

As RAGE may be involved with cell growth and death, its
role in cell recovery after injury has also been examined.
In rats with permanent middle cerebral artery occlusion,
levels of RAGE increase as they do in PC12 cells following

oxygen and glucose deprivation (OGD). Blockade of
RAGE reduces cytotoxicity caused by OGD [180]. Binding
of RAGE to its ligands activates the NF-κB pathway. The
presence of RAGE, NF-κB, and NF-κB regulated cytokines
in CD4+, CD8+, and CD68+ cells recruited to nerves of
patients with vasculitic neuropathies suggests that the
RAGE pathway may also play a role in the upregulation of
inflammation in this setting [181]. Another RAGE ligand,
AGE-CML, is present in endoneurial and epineurial
mononuclear cells in chronic inflammatory demyelinat-
ing polyneuropathy and vasculitic polyneuropathy [182].

In glioma cells, RAGE is part of a molecular checkpoint
that regulates cell invasiveness, growth, and movement. In
contrast to lung cancer cells, normal glioma cells express
less RAGE than tumor cells. Addition of AGEs to cells
stimulates proliferation, growth, and migration. Addition
of antibodies targeting RAGE conversely inhibits the
growth and proliferation caused by AGEs, increasing sur-
vival time and decreasing metastases in immunocompro-
mised mice bearing implanted rat C6 glioma cells [183].

RAGE in Epithelial Malignancies
The interaction between RAGE and its various ligands
plays a considerable role in the development and metas-
tasis of cancer. RAGE impairs the proliferative stimulus of
pulmonary and esophageal cancer cells [184]. RAGE is
highly expressed in Type-I pneumatocytes, specifically
localized in the alveolar epithelium. Interestingly, over-
expression of RAGE leads to lower cell proliferation and
growth, while downregulation of RAGE promotes devel-
opment of advanced stage lung tumors [19,185]. Further-
more, blocking AGE-RAGE interactions leads to
diminished cell growth [186]. Cells expressing RAGE have
diminished activation of the p42/p44-MAPK pathway and
growth factor production (including IGF-1) is impaired.
RAGE ligands detected in lung tumors include HMGB1,
S100A1, and S100P. In pulmonary cancer cells transfected
with a signal-deficient form of RAGE lacking the cytoplas-
mic domain, increased growth when compared to fl-
RAGE-transfected cells is noted. Over-expression of RAGE
on pulmonary cancer cells does not increase cell migra-
tion, while signal deficient RAGE does [187].

RAGE and Immune Cells
RAGE also acts as an endothelial adhesion receptor that
mediates interactions with the β2 integrin Mac-1 [29].
HMGB1 enhances RAGE-Mac1 interactions on inflamma-
tory cells, linking it to inflammatory responses (Table 4)
[71,72]. Neutrophils and myelomonocytic cells adhere to
immobilized RAGE or RAGE-transfected cells, and this
interaction is attributed to Mac-1 interactions [24,71].
RAGE is highly expressed in macrophages, T lymphocytes,
and B lymphocytes [188]. RAGE expressed on these cell
types contributes to inflammatory mechanisms. The acti-
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vation of RAGE on T-Cells is one of the early events that
leads to the differentiation of Th1+ T-Cells [189]. RAGE is
also a counter-receptor for leukocyte integrins, directly
contributing to the recruitment of inflammatory cells in
vivo and in vitro. Soluble RAGE has been postulated as a
direct inhibitor of leukocyte recruitment [190]. RAGE-
mediated leukocyte recruitment may be particularly
important in conditions associated with higher RAGE
expression, such as diabetes mellitus, chronic inflamma-
tion, atherosclerosis or cancer [33]. RAGE can directly
mediate leukocyte recruitment, acting as an endothelial
cell adhesive receptor and attracting leukocytes. RAGE
causes an "indirect" increase in inflammatory cell recruit-
ment due to RAGE-mediated cellular activation and
upregulation of adhesion molecules and proinflamma-
tory factors [190]. S100A12 and S100B activate endothe-
lial, vascular smooth muscle cells, monocytes and T cells
via RAGE, resulting in the generation of cytokines and
proinflammatory adhesion molecules [24,67,68].

RAGE expression on T cells is required for antigen-acti-
vated proliferative responses [189]. RAGE deficient T cells
decrease production of IL-2, IFN-γ, and Th1 while produc-
ing more IL-4 and IL-5 as Th2 cytokines. RAGE activation
thus plays a role in balancing Th1 and Th2 immunity.
RAGE deficient dendritic cells appear to mediate rather
normal antigen presentation activity and migration both
in vivo and in vitro. RAGE expression is however required
by maturing DCs to migrate to draining lymph nodes
[191].

Conclusion
RAGE and its ligands play essential roles in inflammation,
neurobiology, cancer, and numerous other conditions.
Each ligand distinctly activates RAGE and contributes to
the innate and adaptive immune responses as well as
modulating, in complex and poorly understood ways, the
ability of a variety of cell types to expand and respond to
exogenous growth factors. Further studies on RAGE lig-
ands should include focusing on and characterizing
changes in signal transduction and inflammatory mecha-
nisms. Other therapeutic molecules besides soluble RAGE
may be important to inhibit RAGE activation and, in the
setting of cancer, tumorigenesis. RAGE is the link between
inflammatory pathways and pathways promoting tumor-
igenesis and metastasis. Characterizing the role of RAGE
in vivo and in vitro can be broadly applied to a variety of
pathological conditions and incorporated into a wide
array of treatment regimens for these conditions.
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Table 4: Major Immune Cells Expressing or Responding to RAGE-expressing Cells

Immune cell Associated RAGE ligand Effects on immune cells Associated diseases

Neutrophils AGE, Mac-1 Neutrophils adhere to RAGE-transfected 
cells but free AGE reduces this adherence 
and the ability of neutrophils to kill 
phagocytosed microorganisms (bacteria); 
This adherence elevates intracellular free 
calcium levels in humans. Upregulation of 
RAGE was not found after binding.

Diseases where AGE has been implicated 
(diabetes atherosclerosis, and Alzheimer's 
disease)

T Cells HMGB1 RAGE activation is one of the early events 
in differentiation and proliferation of Th1+ 
cells

Arthritis

B Cells HMGB1-CpG DNA Stimulates cytokine release along with 
TLR9

Sepsis

Macrophages, Monocytes Any RAGE ligand Inflammatory response is generated. 
Increased conversion of monocytes to 
macrophages. RAGE activation leads to 
destruction of macrophages.

Diabetes

Dendritic Cells HMGB1, some S100's Antigen presenting capacity is unaffected. 
RAGE expression is upregulated after 
cellular activation.

Arthritis
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